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Abstract. We have extended the definition of the Manhattan lattice from two-dimensional to
three-dimensional (3D) spaces. The number of self-avoiding walks on the 3D Manhattan lattice,
Cn, and their mean-square end-to-end distances, 〈R2

n〉, were counted exactly up to 31 and 30
steps, respectively. Analysis using the method of the Dlog Padé approximant gave the exponents
γ = 1.1615 ± 0.0002 and ν = 0.5870 ± 0.0025, which are in good agreement with corresponding
values for self-avoiding walks on the ordinary 3D lattice. This result suggests that self-avoiding
walks on the 3D Manhattan lattice belong to the same universality class as self-avoiding walks on
the ordinary 3D lattice.

The random walk on a lattice has been studied broadly and systematically since Polya [1]
proposed it in 1921. In addition to its theoretical significance for mathematicians [2], the
model of the lattice walk finds many applications in physics, chemistry and biology [3, 4].
Self-avoiding walks (SAWs) are a subset of random walks, where no site can be occupied
more than once. This simple restriction introduces great complexity into the SAW problem.
Up to now, only a few rigorous analytic solutions for the many problems of SAW have been
given. Therefore, attention has turned to computer methods; especially exact enumeration and
the Monte Carlo method [5–7].

Self-avoiding walks play an important role in conformational simulations, Ising models,
percolation and other studies of polymer models. They have become standard tools in statistical
mechanics and can be divided into two classes: SAWs on a normal (i.e. isotropic) lattice and
SAWs on an oriented lattice. The latter are especially important for oriented polymers [8–10].

The Manhattan lattice is one of the simplest oriented lattices. It is a square lattice in which
adjacent rows (or columns) have antiparallel orientations. It is so named for its similarity to
the traffic pattern in Manhattan.

In previous studies [11–15] the investigation of SAWs on the Manhattan lattice has been
confined to two-dimensional (2D) space. Here we extend the Manhattan lattice from a two-
dimensional plane to three-dimensional (3D) space. First, we define a three-dimensional
Cartesian coordinate system, in which the positive directions of x, y and z axes are given in
a right-handed sense as shown in figure 1. The walk begins at the origin and the first step is
constrained to be in one of the three positive directions of the x, y or z axes. Thus, after the
first step the walker arrives at one of the three points (1, 0, 0), (0, 1, 0) or (0, 0, 1). Obviously,
the walking rule here is different from that for SAWs on the simple cubic lattice. In order
to determine the direction for the next step of the walker on the general point (xi , yi , zi), the
following rule was adopted. In the x-direction the walker goes in the positive direction when
the absolute value |yi + zi | is even and in the negative direction when |yi + zi | is odd. Similarly,
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Figure 1. A plane representation of the lattice orientation for the
three-dimensional Manhattan lattice (in the z-direction: ⊕ backward,
� forward).

Table 1. Conformational numbers Cn and the mean-square end-to-end distance 〈R2
n〉 obtained by

the exact enumeration for SAWs with length n on the three-dimensional Manhattan lattice.

n Cn 〈R2
n〉 n Cn 〈R2

n〉
1 3 1.000 000 17 48 401 211 33.955 990
2 9 2.666 667 18 134 514 255 36.298 032
3 27 4.111 111 19 373 860 519 38.643 061
4 75 6.080 000 20 1 035 667 281 41.124 690
5 213 7.985 915 21 2 872 971 003 43.559 105
6 603 9.870 647 22 7 970 116 713 45.993 682
7 1 707 11.804 921 23 22 111 736 367 48.430 193
8 4 749 13.958 307 24 61 204 173 297 50.985 755
9 13 311 16.042 596 25 169 573 085 367 53.500 036

10 37 287 18.132 110 26 469 846 057 713 56.014 039
11 104 463 20.229 316 27 1 301 892 806 043 58.529 309
12 290 067 22.524 300 28 3 601 277 482 413 61.150 405
13 808 479 24.752 543 29 9 968 856 732 885 63.734 708
14 2 253 255 26.983 359 30 27 596 559 129 417 66.318 475
15 6 280 407 29.218 844 31 76 398 074 633 469
16 17 416 323 31.614 959

for the y coordinate the walker moves in the positive direction for even |xi + zi | and in the
negative direction for odd |xi + zi | and in the z-direction the walker moves in the positive
direction for even |xi + yi | and in the negative direction for odd |xi + yi |. With this convention
the 3D Manhattan lattice is a natural extension of the familiar 2D Manhattan lattice and if
zi ≡ 0, the 3D Manhattan lattice reduces to the 2D one.

Exact enumeration [16] is a computer method in which one fully enumerates all the
possible conformations for self-avoiding walks from a given origin and is then able to evaluate
the properties of each conformation. The number of conformations, Cn, and the mean-square
end-to-end distances, 〈R2

n〉, obtained by the exact enumeration for SAWs on the 3D Manhattan
lattice are listed in table 1.

The generating function for a SAW can be written as [16]

f (x) = 1 +
∑
n�1

Cnx
n ∼ A(1 − µx)−γ (1)

where n is the step number (the chain length). The number of conformations is given by
Cn ∼ µnnγ−1, where µ is the connective constant and γ is a universal critical exponent.
Defining a parameter

µn ≡ Cn/Cn−1 ∼ [1 + (γ − 1)/n]µ (2)
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Figure 2. A plot of µn as a function of 1/n for self-
avoiding walks with length n on the three-dimensional
Manhattan lattice.

Figure 3. A plot of gn as a function of 1/n for self-
avoiding walks with length n on the three-dimensional
Manhattan lattice.

and plotting µn against 1/n, we extract µ and γ by extrapolating to 1/n = 0.
Similarly, the generating function for the mean-square end-to-end distance can be written

as

g(x) = 1 +
∑
n�1

〈R2
n〉xn ∼ B(1 − x)−γ (3)

where 〈R2
n〉 ∼ n2ν is the mean-square end-to-end distance of n-step SAWs and ν is a universal

critical exponent. Through the parameter

gn = 1
2n(〈R2

n+1〉/〈R2
n〉 − 1) (4)

the extrapolation to 1/n = 0 gives an estimate for ν.
It is interesting that there are period-four oscillations in figures 2 and 3. This is significantly

different from the well known odd–even oscillation of SAWs on the simple cubic lattice.
Similar period-four oscillations which correspond to singularities of f (x) and g(x) at poles
x = −xc are also observed for SAWs on the 2D Manhattan lattice [11, 12]. These oscillations
complicate the estimation of γ or ν by simple extrapolation, so we have applied the Padé
approximant method [17] to analyse the critical exponents.

The Padé approximant is a series analysis method widely used in statistical mechanics.
The [N/D] Padé approximant for f (x) is the quotient of two polynomials of degrees N and
D, the coefficients of which are chosen in such a way that the expansion of the PN(x)/QD(x)

agrees with the exact expansions of f (x) up to the xN+D term. Ordinarily one sets

f (x) = PN(x)

QD(x)
= p0 + p1x + · · · + pNxN

1 + q1x + · · · + qDxD
(5)

and requires PN(x) and QD(x) to satisfy

QD(x)f (x) − PN(x) = O
(
xN+D+1

)
. (6)

However, this method is effective only if f (x) has at most one singularity. For a chain-
generating function of SAWs on the 3D Manhattan lattice with their multiple singularities one
should use the Dlog Padé approximant [17], where the generating function f (x) is replaced
by its logarithmic derivative

F(x) = d

dx
ln f (x) = f ′(x)

f (x)
= P(x)

Q(x)
. (7)



3974 K Fan et al

Table 2. Unbiased estimated values of µ, γ and ν for the three-dimensional Manhattan lattice
using the method of the [N/D] Dlog Padé approximant.

[N/D] µ γ ν [N/D] µ γ ν

[13/12] 2.752 819 1.161 433 0.588 393 [14/14] 2.752 804 1.161 576 0.588 248
[13/13] 2.752 629 1.164 339 0.582 343 [14/15] 2.752 804 1.161 624 0.588 827
[13/14] 2.752 789 1.161 746 0.588 964 [15/14] 2.752 804 1.161 566 0.593 153
[14/13] 2.752 804 1.161 567 0.581 177 [15/15] 2.752 834 1.161 338

The pole of the [N/D] approximants closest to the origin on the positive real axis and the
residue at this pole provide estimated values for xc and −γ , respectively.

Similarly, we have

G(x) = d

dx
ln g(x) = g′(x)

g(x)
= P(x)

Q(x)
. (8)

The residue at the pole xc = 1 is equal to −1 − 2ν.
The connective constant µ and the critical exponents γ and ν obtained by using the

Dlog Padé approximant are listed in table 2.
Summarizing the calculated results for self-avoiding walks on the 3D Manhattan lattice,

we obtain

µ = 2.7528 ± 0.0001

γ = 1.1615 ± 0.0002

ν = 0.5870 ± 0.0025.

(9)

In comparison with the existing theoretical predictions for the exponents γ and ν obtained
using the renormalization group (RG), Monte Carlo (MC) and exact enumeration (EE),

γ =




1.1613 ± 0.0021 EE [18]

1.1619 ± 0.0001 EE [19]

1.1608 ± 0.0003 MC [20]

(10)

ν =




0.5880 ± 0.0010 RG [21]

0.5877 ± 0.0013 MC [22]

0.5880 ± 0.0018 MC [23]

(11)

it was found that our results of SAWs on the 3D Manhattan lattice are consistent with the
above values. This conclusion indicates that SAWs on the 3D Manhattan lattice belong to the
same universality class as that of the ordinary SAWs, which provides substantial support to
the recently proposed view of Caracciolo et al [11].
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